Answer: Lie Algebras: Adjoint Representations of Same Dimension as Basis

yorik
Messages
7
Reaction score
0
Hello,

I hope it's not the wrong forum for my question which is the following:

Is there some list of Lie algebras, whose adjoint representations have the same dimension as their basic representation (like, e.g., this is the case for so(3))? How can one find such Lie algebras? Could you recommend some literature to me?

Thanks in advance!
 
Physics news on Phys.org


I'm not very well-founded in Lie-algebra's, but the adjoint of an element x is the map
\operatorname{ad}_x: y \mapsto [x, y]
isn't it?
So the adjoint is linear, i.e.
\operatorname{ad}_x + \operatorname{ad}_y = \operatorname{ad}_{x + y}, \operatorname{ad}_x(y) + \operatorname{ad}_x(z) = \operatorname{ad}(y + z)
etc. - then isn't the adjoint representation always of the same dimension.
I.e. the basic representation provides the generators g_i of the Lie-algebra, and then \operatorname{ad}_{g_i} generate the adjoint representation?
 


Well, the basic idea of the Lie groups and lie algebras is the following. A Lie group G is a group, whose elements can be written as exp(i * ak Xk), where k runs from 1 to N and over k is summed (Einstein summation convention), ak are some real-valued parameters and Xk are some linearly independent hermitian operators (so called generators). They form an N-dimensional vector space (however, the dimension of the Hilbert space on which they act is not specified).

Now, the generators satisfy [Xk, Xl] = i fklmXm, where the f's are the so called structure constants. They define the Lie algebra of the Lie group G. It turns out, you can find infinitely many generator spaces (of different), which satisfy the algebra. The smallest irreducible generator space gives us the basic (fundamental) representation of the Lie Algebra.

We can also define the so called adjoint representation. We define
(Tk)lm = - i fklm. It has the same dimension as the Lie group. But, in generally, its dimension is not equal to the dimension of the fundamental representation. However, it's the case for so(3), the Lie Algebra of SO(3): http://math.ucr.edu/home/baez/lie/node5.html.

So my question is: Are there any other Lie groups / algebras for which the dimension of the two representations are equal like it is for SO(3) / so(3)?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top