Answer: Solve Poisson Distribution Prob | Rare Event?

cse63146
Messages
435
Reaction score
0
[SOLVED] Poisson Distribution

Homework Statement



Let X be the number of people entering the ICU in a hospital. From Historical data, we know the average number of people entering ICU on any given day is 5

a) What is the probability that the number of people entering the ICU on any given day is less than 2. Do you think this is a rare event?

b) What is the probability of people entering the ICU on any 2 consecutive day is less than 2. Do you think this is a rare event?

Homework Equations



P(X = K) = \frac{\mu^k e^{-\mu}}{k!}

The Attempt at a Solution



a) P (X &lt; 2) = P(X=0) + P(X=1) = \frac{5^0 e^{-5}}{0!} + \frac{5^{1} e^{-5}}{1!}<br /> = e^{-5} + 5e^{-5} = 6e^{-5} = 0.0404

b) Since it's 2 consecutive days =>P (X < 2)*P (X < 2) = P (X < 2)^2 = 0.0404^2 = 0.00163

How would I determine if it's a rare event? Would I just compare it to 5 people entering the ICU for both cases?

Thank You
 
Last edited:
Physics news on Phys.org
Your work looks fine (although a couple of signs are switched the fractions in part a -- corrected in following work).
a) The probability is only about .04, so about 1 chance in 25. I'd say that's a fairly rare occurrence.
b) The probability is much less, hence a much rarer event.
 
Thank You.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top