Asphyxiated
- 263
- 0
Homework Statement
My book gives the theorem for parabolas as:
The graph of the equation:
y = ax^{2}
(where a \neq 0 ) is the parabola with focus F(0,\frac{1}{4}a) and the directrix y = -(\frac{1}{4}a). Its vertex is (0,0), and its axis is the y-axis.
It then goes on to use these equations in an example like so:
PROOF: Let us find the equation of the parabola with focus F(0,d) and directrix y= -d.
Where d= \frac{1}{4}a
*Rest of proof omitted as it has nothing to do with what I am asking*
so then it moves on to an example where it asks:
Find the focus and directrix of the parabola:
y = -\frac{1}{2}x^{2}
*straight from the book*=
Using Theorem 1 (the theorem posted above):
a = -\frac{1}{2} \;\;\;\; and \;\;\;\; d= \frac{1}{4}a
so in this problem:
d = -\frac{1}{2} ?
_________________________________
*End from book*
Shouldn't d = -1/8 not -1/2? If d = (1/4)a and a = -1/2, then isn't (-1/2)(1/4) = -1/8?
I ask this only because every other point in this chapter builds from this point and I want to make sure I am not just stupid and there is actually a problem here.
Last edited: