Apparent magnitude of the Moon from Mercury?

AI Thread Summary
To find the apparent magnitude of the Moon as seen from Mercury, the distance from the Moon to Earth must be considered alongside the distance from Mercury to the Moon. The apparent magnitude equation requires knowing the absolute magnitude of the Moon, which is typically around -12.6 when viewed from Earth. The key is to calculate the ratio of distances between the Moon-Earth and Moon-Mercury, using the inverse square law for luminosity. By applying logarithmic transformations to the distance ratios, the apparent magnitude can be derived. This approach simplifies the calculation without needing to reference absolute magnitude at 10 parsecs.
rtfirefly
Messages
2
Reaction score
0
I know there there has to be a simple answer to this, but I can't understand where it's at. Here is the question.

Find the apparent magnitude of the Moon [Earth's] as seen from Mercury. Assume Mercury is 0.52 AU from the Moon and that Mercury sees the Moon fully [it's a full moon].

Okay, here is where my thinking lays. I'm going to be using M = m + 5 - 5log(d), where M = absolute magnitude of the Moon, m = apparent magnitude of Moon, and d = distance from Moon to Mercury in parsecs = 2.521×10^(-5) pc.

But the problem I run into is M - I don't know it. I know that the absolute magnitude is the apparent magnitude measured at 10pc, but then I run into not knowing m. I guess I could use the apparent magnitude from Earth (≈-12.6), but when I plug that into the equation using the 10pc I get back -12.6 for the absolute magnitude and that does not work for me. I can only presume I am missing a piece of the puzzle and I don't know where it is. Any help you can offer me would be appreciated.
 
Astronomy news on Phys.org
Simplify it: skip the 10 pc.

The piece of puzzle which you have not mentioned is the distance of Moon from Earth. Since the distance of Mercury from Moon is conveniently in AU, which is of convenient magnitude, find out distance of full Moon from Earth in AU.

Then ratio of distances Moon-Earth and Moon-Mercury. Which you can then get logaritm from.
 
Right, thank you, but I was only given this one ready assignment that sort of talks about this stuff and the homework is based on it and did not read anything about this. The closest that it talks about ratios is be using the equation: m -n = 2.5log(Ln/Ln), where m and n are two apparent magnitudes, and Ln and Lm are their brightness. So I really don't know what equation I should be using to solve this problem. I realize that I may have to think outside the text (though in my experience teachers don't like you coming up with stuff from other places), but I did anyways and I still am confused as too what I am suppose to do. I think I'm thinking to hard now and everything at this point is becoming muddled.
 
rtfirefly said:
The closest that it talks about ratios is be using the equation: m -n = 2.5log(Ln/Ln), where m and n are two apparent magnitudes, and Ln and Lm are their brightness.

You have (Ln/Ln) in your equation - no Lm, and twice Ln, so that expression is always 1.

Just consider that the apparent luminosity decreases with inverse square of distance - for the same source like full Moon and viewed from the same direction,
Lm*dm2=Ln*dn2,
where dm is the distance where object has brightness Lm, and dn is distance where the object has brightness Ln.

Divide that expression with
Ln*dm2
and we get
(Lm/Ln)=dn2/dm2
Now take the logarithm
log (Lm/Ln)=log((dn/dm)2)=2log(dn/dm)
so
2,5 log(Lm/Ln)=5log(dn/dm)

Can you continue from that point?
 
Is a homemade radio telescope realistic? There seems to be a confluence of multiple technologies that makes the situation better than when I was a wee lad: software-defined radio (SDR), the easy availability of satellite dishes, surveillance drives, and fast CPUs. Let's take a step back - it is trivial to see the sun in radio. An old analog TV, a set of "rabbit ears" antenna, and you're good to go. Point the antenna at the sun (i.e. the ears are perpendicular to it) and there is...
3I/ATLAS, also known as C/2025 N1 (ATLAS) and formerly designated as A11pl3Z, is an iinterstellar comet. It was discovered by the Asteroid Terrestrial-impact Last Alert System (ATLAS) station at Río Hurtado, Chile on 1 July 2025. Note: it was mentioned (as A11pl3Z) by DaveE in a new member's introductory thread. https://www.physicsforums.com/threads/brian-cox-lead-me-here.1081670/post-7274146 https://earthsky.org/space/new-interstellar-object-candidate-heading-toward-the-sun-a11pl3z/ One...

Similar threads

Back
Top