Applying Power concepts to a Rocket?

AI Thread Summary
The discussion focuses on applying power concepts to rocket propulsion, specifically using the Tsiolkovsky rocket equation. It highlights the relationship between power, thrust, and mass flow rate, emphasizing that power is frame-dependent. The power output can be calculated as thrust times the rocket's velocity, with an important note on the Oberth Effect, where power increases as the rocket speeds up. Additionally, it explains that the power output can exceed the chemical energy of the fuel due to the kinetic energy of the ejected plume. Overall, understanding these power dynamics is crucial for analyzing rocket performance.
Jorghi123
Messages
1
Reaction score
0
I've recently learned about the "Tsiolkovsky rocket equation" which can be used to relate initial mass, final mass, rate of fuel change, velocity change, etc.. Except I'm having difficulty applying it to Power.

How do you find the instantaneous Power of the engine, fuel, and the total power of the engine?
 
Physics news on Phys.org
The fuel has a chemical potential energy, which after losses (such as heat), is converted into the total energy of the rocket and the plume of spent fuel ejected by the rocket engine.

One way of calculating the power is to assume an initial state where the rocket is not moving and all of the energy is going into the ejected mass.

update as mentioned in the next post, power equals increase in energy per unit time

The power will equal the 1/2 mass flow per unit of time (m dot), times the exit velocity^2 of the mass.
 
Last edited:
Thrust is equal to mass flow rate times flow velocity, not power. Power is more complicated.

For starters, power is frame-dependent. In the frame of the rocket, we can only talk about power output in terms of work done on the exhaust. Naturally, that's half of the mass flow rate times the flow velocity squared. P = \frac{1}{2}\dot{m}v_p^2 Just like kinetic energy, but we are using mass flow rate instead of mass to get power output. This quantity, however, is pretty useless.

It is much more useful to talk about work being done on the rocket itself from a perspective of an external inertial frame. In this case, power of the rocket is thrust times rocket's velocity.

P = F_p v = \dot{m}v_p^2 ln\left(\frac{m_0}{m}\right)

Here, m is the current mass of the rocket, m_0 is initial mass, v_p = g I_{SP} is exhaust velocity, and \dot{m} is the mass flow rate.

The interesting bit here is that power obviously increases as the rocket speeds up. This is known as the Oberth Effect. Furthermore, once the rocket is really going, this power output can be significantly higher than available chemical energy of the fuel! How is this possible? Well, once the rocket is traveling at high speeds, fuel also has kinetic energy. So you get higher power output of the rocket engine by tapping into kinetic energy of the fuel you are burning, which, in turn, was built up by burning fuel when the rocket was going slow.
 
K^2 said:
For starters, power is frame-dependent.
My understanding is that if the energy of the ejected plume of fuel and the energy of the rocket are both included as the total mechanical energy of the system, then the power output from the engine is independent of the frame of reference, as long as the frame of reference is inertial.
 
rcgldr said:
My understanding is that if the energy of the ejected plume of fuel and the energy of the rocket are both included as the total mechanical energy of the system, then the power output from the engine is independent of the frame of reference, as long as the frame of reference is inertial.
That is exactly the quantity that K^2 described as pretty useless.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top