Applying the Kutzbach Gruebler criterion to a pantograph

  • Thread starter Thread starter amrbekhit
  • Start date Start date
AI Thread Summary
The discussion focuses on applying the Kutzbach Gruebler criterion to complex mechanisms, specifically a pantograph and another unspecified mechanism. The user struggles to accurately count degrees of freedom (DOF) and joints, leading to discrepancies in their calculations. They initially miscounted joints that connect multiple links, which should be counted multiple times according to the number of links they constrain. The conversation highlights the importance of recognizing ternary and quaternary joints in determining the correct DOF. Ultimately, the user seeks clarification on identifying joints and understanding the constraints in more complex mechanisms.
amrbekhit
Messages
11
Reaction score
1
Hello all,

I'm having trouble understanding how to apply the Kutzbach Gruebler equation to all but the simplest of mechanisms.

As I understand it, the DOFs of a mechanism is a sum of the DOFs of all the moving links minus the sum of the all the DOFs constrained by the joints. For a planar four bar linkage with one link grounded, there are 3 moving links (so total DOFs = 3 links * 3 DOF = 9) and 4 rotary joints (constrained DOFs = 4 joints * 2 DOF = 8). The total DOF = 9 - 8 = 1.

Now consider the pantograph mechanism shown in the attached picture. I can see that there are a total of 7 links (including the base), 6 of which are moving (total DOFs = 6 links * 3 DOF = 18). However, I can only identify 7 joints (5 rotary, 2 prismatic), which would constrain a total of 7 * 2 = 14 DOF, giving the total DOFs as 18 - 14 = 4, which I know is incorrect. According to the book I got the picture out of, there are actually 8 joints, which gives the correct answer of 2 DOF.

Likewise, I also have a problem with the mechanism on the left hand side of the following image:

http://www.cs.cmu.edu/~rapidproto/mechanisms/figures/dcacu.gif

I can see 5 moving links (15 DOF) but only 6 joints (5 rotary and 1 prismatic: 12 DOF) instead of 7, giving a total DOF = 3, whereas the correct answer (according to the site) is 1.

So, for some reason, there always seems to be an extra joint that I'm unable to identify. What am I missing?

Thanks

Amr
 

Attachments

  • IMAG0412.jpg
    IMAG0412.jpg
    22.2 KB · Views: 1,075
Engineering news on Phys.org
It seems you're forgetting to count the joint multiple times on the mechanism that joins more than 2 links. On the pantograph, you have to count the joint that joins links 2, 4, and 5 twice. On the left hand side of the image you linked to, joint C needs to be counted twice because it joins links 2, 3, and 4. Any time N links are constrained by the same pin joint, you count that joint N-1 times.
 
Ah that's it, thanks. That explains what the book meant when it was describing ternary and quaternary joints.
 
I've attached a photo for another mechanism that is keeping me scratching my head.

As far as I can tell, this is a 1DOF mechanism, with a single linear actuator allowing the fingers to rotate together about a certain point.

I've highlighted in the image where I think the moving links are. I reckon that each pinion and adjoining link are rigidly linked, and connected to ground via a pin joint.

The list of moving links is:
  • 1 x Linear actuator/rack (dark green).
  • 2 x Pinion/inside link (blue, magenta).
  • 2 x Outside link (red, lime).
  • 2 x Finger (brown, black).

Resulting in 7 links and a total of 7 * 3 = 21 DOF.

The list of joints is:
  • 1 x prismatic joint.
  • 2 x rack/pinion joint.
  • 8 x revolute joint.

Resulting in 11 joints a total of 11 * 2 = 22 constrained DOF.

Unfortunately, this would imply that the mechanism is overconstrained, which it isn't. What am I missing?

Amr
 

Attachments

  • parallel gripper.jpg
    parallel gripper.jpg
    44.7 KB · Views: 1,121
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top