How do I Integrate \sqrt{1+x^4+2x^2}?

  • Thread starter Thread starter miglo
  • Start date Start date
  • Tags Tags
    Arc Integral
miglo
Messages
97
Reaction score
0

Homework Statement


y=\frac{1}{3}\left(x^2+2\right)^{3/2}


Homework Equations


\int_{a}^{b}\sqrt{1+\left(\frac{dy}{dx}\right)^{2}}dx


The Attempt at a Solution


\frac{dy}{dx}=x\sqrt{x^2+2}
\int_{0}^{3}\sqrt{1+\left(x\sqrt{x^2+2}\right)^{2}}dx=\int_{0}^{3}\sqrt{1+x^4+2x^2}dx
I'm stuck with that integral, not sure what the antiderivative for that function would be
Any hints at the next step would be greatly appreciated.
 
Physics news on Phys.org
Here's a hint: x4+2x2+1 = (x2+1)2
 
Wow I can't believe i didn't see that.
I tried Wolfram Alpha earlier and they used a substitution but i couldn't follow their steps so i decided to consult the Physics Forums.
Thanks Char. Limit.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top