cdotter
- 305
- 0
Homework Statement
r(t)=cos(t^2)\hat{i}+sin(t^2)\hat{j}+t^2\hat{k}
Compute the arc length integral from t=0 to t=\sqrt{2 \pi}
Homework Equations
Arclength = \int_{a}^{b}||v(t)||\, dt
The Attempt at a Solution
I did the following:
\\r'(t)=-2tsin(t^2)\hat{i}+2tcos(t^2)\hat{j}+2t\hat{k}\\
||r'(t)||=\sqrt{4t^2sin^2(t^2)+4t^2cos^2(t^2)+4t^2}
\int_{0}^{\sqrt{2 \pi}}\frac{r'(t)}{||r'(t)||} \, dt
I put the integral in Maple and it gave me 1.9 something if I remember correctly?
My professor has the answer as: \int_{0}^{\sqrt{2 \pi}}2t\sqrt{2} \, dt = 2 \pi \sqrt{2}[/itex]<br /> <br /> Where did I go wrong? <img src="https://cdn.jsdelivr.net/joypixels/assets/8.0/png/unicode/64/1f615.png" class="smilie smilie--emoji" loading="lazy" width="64" height="64" alt=":confused:" title="Confused :confused:" data-smilie="5"data-shortname=":confused:" />