Arclength in polar coordinates?

vsage
You know this should be simple but it's just not. A friend asked me this earlier and I was unable to disprove him. We're all aware of how one derives the area of a polar equation.. it's \pi r^2 \frac {\theta}{2 \pi} and make theta infinitely small and integrate. Why can't a similar process be performed to find the arclength? IE 2 \pi r \frac{\theta}{2 \pi} and make theta infinitely small and integrate. Obviously I can't derive this from rectangular coordinates because it only works for constant r but I just can't seem to disprove it.
 
Last edited by a moderator:
Mathematics news on Phys.org
Nevermind I think I solved it. The arclength formula he proposed to be when interpreted graphically had gaps between the lengths of r(d(theta)) and it was losing arclength that way. (edit here's my rendition, in case someone is stumped like I was). The figure is supposed to be a small section of curve with r varying.
 

Attachments

Last edited by a moderator:
I'm not sure what you are trying to do but in the case of area you are changing both r and \theta so that dA = dr \times r d\theta whereas for path length you change r and \theta according to Pythagoras being applied to infinitesimal displacements so that ds = \sqrt {dr^2 + r^2 d\theta^2}.
 
Yeah I guess what threw me off at first was that r = sqrt(x^2+y^2) in rectangular coordinates so I figured the pathagorean theorem was already being applied (which it wasn't). Thanks for your input.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
8
Views
3K
Replies
10
Views
2K
Back
Top