Are Elements Formed by Linear Transformations Linearly Independent?

awef33
Messages
2
Reaction score
0
Let V be a vector space and let T: V \rightarrow V be a linear transformation. Suppose that n and k are positive integers.

(a) If w \in V such that T^{k}(w)\neq0 and T^{k+1}(w)=0, must {w, T(w),...,T^{k}(w)} be linearly independent?

(b) Assuming that w \in V such that T^{k}(w)\neq0 and T^{k+1}(w)=0. Let W be the subspace of V spanned by {w, T(w),...,T^{k}(w)}. If v is a member of V such that T^{n}(v)\notinW and T^{n+1}(v)\inW, must {w, T(w),...,T^{k}(w),v,T(v),...,T^{n}(v)} be linearly independent? Explain.

 
Physics news on Phys.org
(a) What is the definition of linear independence?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top