Are P[A,B] Independent When P[A|B]=P[A|B^c]?

  • Thread starter Thread starter Dragonfall
  • Start date Start date
  • Tags Tags
    Probability
Dragonfall
Messages
1,023
Reaction score
5

Homework Statement


Given that P[A|B]=P[A|B^c], prove that they are independent.

The Attempt at a Solution



So we have that \frac{P(A\cap B)}{P(B)}=\frac{P(A\cap B^c)}{P(B^c)}. I would have to show that \frac{P(A\cap B^c)}{P(B^c)}=P(A). I can't make that happen.
 
Physics news on Phys.org
Try using the fact that <br /> P(A \cap \overline B ) = P(A) - P(A \cap B), i think.
 
Got it. This was unusually convoluted for something so trivial.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top