eljose
- 484
- 0
Let be the exponential:
e^{inx}=cos(nx)+isin(nx) n\rightarrow \infty
Using the definition (approximate ) for the delta function when n-->oo
\delta (x) \sim \frac{sin(nx)}{\pi x} then differentiating..
\delta ' (x) \sim \frac{ncos(nx)}{\pi x}- \frac{\delta (x)}{\pi x}
are this approximations true for big "n" ??.. i would like to know this to compute integrals (for big n ) of the form:
\int_{2}^{\infty} dx f(x,n)e^{inx}
thanks...

e^{inx}=cos(nx)+isin(nx) n\rightarrow \infty
Using the definition (approximate ) for the delta function when n-->oo
\delta (x) \sim \frac{sin(nx)}{\pi x} then differentiating..
\delta ' (x) \sim \frac{ncos(nx)}{\pi x}- \frac{\delta (x)}{\pi x}
are this approximations true for big "n" ??.. i would like to know this to compute integrals (for big n ) of the form:
\int_{2}^{\infty} dx f(x,n)e^{inx}
thanks...

