ryanwilk
- 55
- 0
Homework Statement
Hey, can I just check these functional derivatives?:
1) \frac{\delta F[g]}{\delta g(y)} where F[g] = \int dx \left[ \frac{1}{\sqrt{1+(g'(x))^2}} - 2g(x) + 5 \right]\>.
2) \frac{\delta F[a,b,g]}{\delta g(y)} where F[a,b,g] = \int d^4x \left[ A(\partial_{\mu} g(x))a(x)b(x) + Bg^3(x) \right]\>.
Homework Equations
\frac{\delta F[g]}{\delta g(y)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[ F[g(x) +\epsilon\delta(x-y)] - F[g(x)] \right]\>.
The Attempt at a Solution
The answers I get are 1) -2 and 2) 3Bg2(y).
Thanks in advance!
Last edited: