Area of the Circle and Probability

AI Thread Summary
The discussion explores a novel probability-based argument for proving the area of a circle as pi*r^2. It involves comparing the probability of randomly selecting points within a unit circle and a square, demonstrating that the area of a circle is proportional to that of a square. The method highlights that the area of a circle can be derived from the properties of similar figures, where areas are proportional to the square of their dimensions. The conversation also touches on the Monte Carlo method, which is recognized in mathematics for estimating areas and probabilities. The participants express interest in further exploring this method and its potential applications in geometry.
musicheck
Messages
29
Reaction score
0
(Apologies for the lack of latex)
I was thinking today about simple ways of proving that the area of a circle is pi*r^2, and I came up with the following argument using probability. I googled around for similar arguments, and I found nothing. I am curious if there is a deeper and more general result this could be a special case of, or if there if anyone else knows of something relating to this.

We know that the area of a square of side length r is r^2. Consider the unit circle centered at the origin, and a circle of radius R centered at the origin. We randomly select two numbers N and M from [-1,1], with uniform distribution. The probability that N^2+M^2<=1 is thus the ratio of the area of the unit circle to the area of a square of side length 2. Now we randomly select two numbers N' and M' from [-R,R]. The probability that N'^2+M'^2<=R^2 is the ratio of the area of the circle of radius R to the area of a square of side length 2R. However, our random selection from [-R,R] is the same as a random selection from [-1,1] and then multiplying by R. Thus, we can calculate that N'^2+M'^2<=r^2 has the same probability as N^2+M^2<=1. Thus, the area of a circle of radius R is proportional to the area of a square of side length 2R. It follows that the area of a circle of radius R has area pi*R^2, for some constant pi.
 
Last edited:
Mathematics news on Phys.org
It is an elementary geometry fact that if you have two figures that are similar, the areas are proportional to the square of the ratio of linear dimension. The more difficult problem is the evaluation of pi, not that it is a constant.
 
I agree that this is a very simple fact. What struck me was that I had never thought of this method of proof as very relevant to geometry, and I was wondering if people knew whether this method (or a generalization of it) of attacking a problem can yield something more fruitful.
 
The method you are talking about, more generally called a "MonteCarlo" method is quite well known in mathematics.
 
Thank you very much HallsofIvy. I had heard that name before, but I didn't know what it was. I'm glad to hear that it is well known, and I look forward to finding a book to read about it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top