Tales Roberto
- 6
- 0
Homework Statement
I would like a detailed solution of following Integrals:
\int^{z_{2}}_{z_{1}} 1/ \left(s^{2}+z^{2}\right)^{1/2} dz
Homework Equations
1+tan^{2} \theta = sec^{2} \theta
The Attempt at a Solution
\int 1/ \left(s^{2}+z^{2}\right)^{1/2} dz = \int 1/ \left[s\left(1+ \left(z/s \right)^{2}\right)^{1/2} \right] dz
Let
z = s \tan \theta \rightarrow dz = s \sec^{2} \theta d \theta
\theta = tg^{-1} \left(z/s\right)
Then
\int^{z_{2}}_{z_{1}} 1/ \left[s\left(1+ \left(z/s \right)^{2}\right)^{1/2} \right] dz = \int^{\theta_{2}}_{\theta_{1}} s \sec^{2} \theta/ \left[s\left(1+tan^{2} \theta \right)^{1/2} \right] d\theta
\int^{\theta_{2}}_{\theta_{1}} s \sec^{2}\theta / \left[s \sec \theta \right] d\theta = \int^{tg^{-1} \left(z_{2}/s\right)}_{tg^{-1} \left(z_{1}/s\right)} sec \theta d \theta
However this not give me the answer i need here (i checked final solution):
\int^{z_{1}}_{z_{2}} 1/ \left(s^{2}+z^{2}\right)^{1/2} dz = \left[ln\left(z^{2}+\sqrt{z^{2}+s^{2}\right)}\right]\right|^{z_{2}}_{z_{1}}
Please, help!
Last edited: