Attempt to combine Charles and Boyles laws

  • Thread starter Thread starter johns123
  • Start date Start date
  • Tags Tags
    Laws
Click For Summary
SUMMARY

The discussion focuses on calculating the pressure at an altitude of 160 km where the air density is 1.5 x 10^-9 kg/m^3 and the temperature is 500 K. Participants utilized the ideal gas law, pV = nRT, and established a relationship between the variables at standard temperature and pressure (STP) and at altitude. The final calculated pressure is approximately 214,913.22 x 10^-9 pascals, achieved by determining the number of moles per cubic meter and applying the ideal gas equation correctly.

PREREQUISITES
  • Understanding of the ideal gas law (pV = nRT)
  • Knowledge of molecular mass and density calculations
  • Familiarity with scientific notation and unit conversions
  • Basic principles of thermodynamics and atmospheric science
NEXT STEPS
  • Learn about the ideal gas law applications in varying conditions
  • Study the properties of gases at different altitudes and temperatures
  • Explore the concept of molecular mass and its impact on gas density
  • Investigate atmospheric layers and their characteristics, particularly the thermosphere
USEFUL FOR

Students studying physics or chemistry, educators teaching thermodynamics, and anyone interested in atmospheric science and gas behavior at high altitudes.

johns123
Messages
34
Reaction score
0

Homework Statement



At altitude of 160 km, the density of the air is 1.5 x 10^-9 kg/m^3

also the temp at that altitude is 500 K ( that's what it says! )

What is the pressure at that altitude?


Homework Equations



pV = nRT and mass density of air = "rho"

the 1-values are at STP, the 2-values are at altitude

p1 = 1ATM ; rho1 = 29 kg/m^3 ; T1 = 273 K

And I don't see that either vol or temp is being
held constant, so just Boyle's or Charle's law
cannot apply alone ( in my opinion ).


The Attempt at a Solution




I think I can establish a ratio between these values at altitude
and the same values at STP and calc the unknown p2. Do you agree?

p1 * V1 n1 * R * T1
_______ = ___________ Where the Rs cancel

p2 * V2 n2 * R * T2


so p2 = p1 [ ( n2 V1 T2 ) / ( n1 V2 T1 )


but ( n2/V2 ) / (n1/V1) should equal ( rho2 / rho1 )

giving p2 = p1 * ( rho2/rho1 ) * T2/T1
 
Physics news on Phys.org
johns123 said:

Homework Statement



At altitude of 160 km, the density of the air is 1.5 x 10^-9 kg/m^3

also the temp at that altitude is 500 K ( that's what it says! )

What is the pressure at that altitude?
I think you are supposed to assume the air has the same molecular mass as it has near the surface (ie. M = 29 g/mol = .029 kg/mol)

At 160 km altitude you are into the thermosphere. The molecules are moving around rather quickly but not a lot of total energy due to low density.

Work out the number of moles / m3. (n/V) and then use PV=nRT to find the pressure.

AM
 
OK. Thanks. I'm struggling with concepts here .. a battle of definitions. I'll solve it your way and post that.
 
Finally, I think I understand it ( I hope )

If air density at altitude is 1.5 x 10^-9 kg/m^3 at 500K and ( your hint ) M = .29 kg/mole that gives

1.5 x 10^-9 / .29 = 5.172 x 10^-9 moles/m^3 .. which is ( your hint ) = n/V

and now use pV = nRT or p = (n/V)RT = 5.172 x 10^-9 ( 8.81 joules/molesK ) 500k ( and the units work )

so finally ( after 2 weeks ) p = 42.98 x 10^-9 pascals ( I sure hope so .. thanks )
 
johns123 said:
Finally, I think I understand it ( I hope )

If air density at altitude is 1.5 x 10^-9 kg/m^3 at 500K and ( your hint ) M = .29 kg/mole that gives

1.5 x 10^-9 / .29 = 5.172 x 10^-9 moles/m^3 .. which is ( your hint ) = n/V
My hint was to use M = .029 Kg/mol. Where did you get .29 Kg/mol?

and now use pV = nRT or p = (n/V)RT = 5.172 x 10^-9 ( 8.81 joules/molesK ) 500k ( and the units work )

so finally ( after 2 weeks ) p = 42.98 x 10^-9 pascals ( I sure hope so .. thanks )
The approach is correct. But where do you get R=8.81 J/mol K? And you appear to have forgotten to multiply by T. So your answer is about 4 orders of magnitude too low. Other than that...

AM
 
I think I need to learn to type :-) it's 8.31 J/mk. I was just copying out of my notebook. Try again.

n/V = 1.5 x 10^-9 kg/m^3 / .029 kg/mole = 51.724 x 10^-9 moles/m^3

and using p = (n/V)RT = 51.724 x 10^-9 ( 8.31 ) 500K = 214913.22 x 10^-9 pa ( I really hate this calculator )

thanks
 
johns123 said:
I think I need to learn to type :-) it's 8.31 J/mk. I was just copying out of my notebook. Try again.

n/V = 1.5 x 10^-9 kg/m^3 / .029 kg/mole = 51.724 x 10^-9 moles/m^3

and using p = (n/V)RT = 51.724 x 10^-9 ( 8.31 ) 500K = 214913.22 x 10^-9 pa ( I really hate this calculator )

thanks
You should round to 2 or 3 significant figures and express the answer in normalized scientific notation. But the answer is correct.

AM
 
Thanks Andrew. I think this one problem holds the key to a world of conversions that are left out of the books. I am using 3 books trying to learn one chapter.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K