Average of function (using dirac delta function)

j3dwards
Messages
32
Reaction score
0

Homework Statement


Compute the average value of the function:

f(x) = δ(x-1)*16x2sin(πx/2)*eiπx/(1+x)(2-x)

over the interval x ∈ [0, 8]. Note that δ(x) is the Dirac δ-function, and exp(iπ) = −1.

Homework Equations


∫ dx δ(x-y) f(x) = f(y)

The Attempt at a Solution


Average of f(x) = 1/8 ∫from 0 to 8 δ(x-1) dx 16x2sin(πx/2)*(-1)/(1+x)(2-x)
Average of f(x) = -1

Is this correct? I'm unsure of whether you can just use δ(x-a) = δ(x-1) and let a=1 and not let a=-1? I don't get how to use this bit of the function as I seem to have just ignored the negative sign.

Many thanks.
 
Physics news on Phys.org
From the problem statement, your a is = to 1 not -1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top