Avg. temperature rise & energy conversion

AI Thread Summary
The discussion focuses on calculating the average temperature rise of a pond due to solar energy and determining the rate of mass conversion from the sun to energy. The solar energy flux received at the Earth's surface is 1.4 kilowatts per square meter, which translates to 1400 joules per second per square meter. For a pond of 100 square meters and 0.1 meter in depth, the energy absorbed over 1000 seconds needs to be calculated to find the temperature increase. Additionally, the relationship between energy and mass conversion is referenced using Einstein's equation E=mc^2, but participants express uncertainty about how to proceed with the calculations. The conversation highlights the complexities of applying physics concepts to real-world scenarios.
timothy997
Messages
1
Reaction score
0
The problem is: The sun is 1.5x10^11 meters from the earth. Energy from the sun is received at the Earth's surface at the rate of 1.4 kilowatts per square meter. I'm trying to find two answers:
1. This energy flux from the Sun falls on a pond of water 100 square meters in area and 0.1 meter in depth. Assume all of this energy heats the water. Find the average temp. rise of the pond after 10^3 seconds
2. Determine the rate in kilograms per second at which the sun's mass is being converted to energy.





For 1, energy flux is Iota=power/area, power=work/time,
For 2, the SA of a sphere is 4pir^2, E=mc^2



So far I have p/1000 for energy flux and power=w/1000. I'm stuck on what to do next, but since the question gives you the distance between the Earth and sun, would w=fd help you find the solution? This question seems unusual compared to ones I've done in the past.
 
Physics news on Phys.org
definition of a kilowatt

Remember that a kilowatt is 1000 watts, which is 1000 joules/second.

Hence, the flux is (1400 joules/second)/100 meters squared, which is 140 joules per meter squared second.

I am not so sure about the rest of the problem, but perhaps this information will help you. I will keep looking at it, though.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top