maxiee
- 7
- 0
Homework Statement
Mathematically, the Azimuthal equation is the same differential equation as the one for a particle in a box. But \Phi(\phi) for m_l = 0, is a constant and is allowed, whereas such a constant wave function is not allowed for a particle in a box. What physics accounts for the difference?
Homework Equations
The Azimuthal Equation:
<br /> \frac{\partial ^{2} \Phi(\phi)}{\partial \phi^{2}} = -m_l ^{2} \Phi(\phi) <br />
The particle in a box equation:
<br /> \frac{\partial ^{2} \psi(x)}{\partial \psi^{2}} = -k ^{2} \psi(x) <br />
The Attempt at a Solution
The boundary conditions seem to play a role in the different allowed wave functions. However, I am having trouble relating the boundary conditions to the allowed quantum numbers.
Thanks in advance
Edit: The Azimuthal Equation corresponds to the Azimuthal motion of a particle. It comes about from the 3D Schrodinger Eq.
The Equation for a particle in a box is the result of the 1D Schrodinger Eq.
Last edited: