Basic S.T.R. problem. K vs K' systems.

  • Thread starter Thread starter amcelroy13
  • Start date Start date
  • Tags Tags
    Systems
amcelroy13
Messages
12
Reaction score
0

Homework Statement




An event occurs in system K' at x' = 2 m, y' = 3.5 m, z' = 3.5 m, and t' = 0. System K' and K have their axes coincident at t = t' = 0, and system K' travels along the x-axis of system K with a speed 0.92c. What are the coordinates of the event in system K?


Homework Equations



x' = \gamma(x-vt)
t' = \gamma(t-(v/c^2)x)

The Attempt at a Solution



I know that, as the system is not moving in either the y or z directions that y and z are the same, so y=3.5m and z=3.5m. I feel as though t should = 0, because in the problem statement it clearly says that "their axes coincident at t=t'=0 so if t'=0 then t should =0, but I've been told that's not right... I'm completely at a loss for x.
 
Physics news on Phys.org
What that means is (t,x)=(0,0) and (t',x')=(0,0) are the same point. It doesn't say anything about points other than the origin. It's like rotations of the xy-plane. The origin for both the unrotated and rotate axes coincide, but other points on the x-axis don't lie on the x' axis. Similarly, just because a point lies on the t'=0 line, it's not going to be on the t=0 line.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top