Ferex:
In scenario 1[/color], the hose outlet is perfectly straight, with no expansion nor contraction. Therefore, the exit head loss, he, is he = 0. Section 1 is immediately after the hose inlet, section 2 is immediately before the hose outlet, and section 3 is immediately after the hose outlet. The pressure at section 1 is given in post 1, p1 = 300 000 Pa.
p2 = p3 = 0, v1 = v2 = v3 = v, z1 = z2 = z3. For water at T = 15 C, density is rho = 998.7 kg/m^3, and absolute viscosity is mu = 1.14e-3 Pa*s. Let's assume the hose absolute roughness is e = 0.010 mm, the hose diameter is D = 15 mm, and the hose length is L = 5 m. The relative roughness is therefore e/D = 0.0007. Friction[/color] head loss is hf = 0.5*f*L*(v^2)/D. Initially assume fully turbulent flow. Therefore, going into the Moody chart, we see f = ~0.0180 for e/D = 0.0007. The Bernoulli equation, written between sections 1 and 2, is therefore as follows.
p1/rho + 0.5*v1^2 = p2/rho + 0.5*v2^2 + hf + he
You could also divide through the above equation by g, if you wish, but I did not. Therefore, (p1 - p2)/rho + 0.5(v1^2 - v2^2) = hf + 0. This gives, p1/rho + 0 = 0.5*f*L*(v^2)/D. Solving for v gives, v = [2*p1*D/(rho*f*L)]^0.5. Therefore, we currently have v = {2(300 000 Pa)(0.015 m)/[(998.7 kg/m^3)(0.0180)(5 m)]}^0.5 = 10.01 m/s.
Now compute the Reynolds number. Re = rho*v*D/mu = 998.7*10.01*0.015/1.14e-3 = 1.32e5. Going back into the Moody chart for e/D = 0.0007, we see f = 0.0191, which does not match our previous value. Therefore, recompute v = [2*300 000*0.015/(998.7*0.0191*5)]^0.5 = 9.714 m/s.
Now Reynolds number becomes Re = 1.28e5. Going back into the Moody chart, we see f = 0.0192, which reasonably matches our previous value. Therefore, v = [2*300 000*0.015/(998.7*0.0192*5)]^0.5 = 9.689 m/s. The flow rate is Q = v*A = 0.001 712 (m^3)/s = 1.71 L/s.
In scenario 2[/color], where the hose exit is contracted by your finger, v1 = v2 ≠ v3, p1 ≠ p2 ≠ p3, p3 = 0. Let v = v1 = v2. Let's say D3 = 10.61 mm; therefore, A3/A2 = 0.50. Compute the hose exit head loss, he, which will now be nonzero due to the outlet contraction. he = 0.5*kc*v3^2, which would perhaps be he = 0.5*0.2*v3^2 (?). We know v3 = v2*A2/A3 = 2*v; therefore, he = 0.4*v^2. Now write the Bernoulli equation between sections 1 and 3, and solve for v, which gives v = {(p1/rho)/[(0.5*f*L/D) + 1.9]}^0.5. Solve for v iteratively, as we did before. I ended up with f = 0.0213, and v = 7.424 m/s. Now write the Bernoulli equation between sections 1 and 2, and solve for p2. Simplifying gives, p2 = p1 - 0.5*rho*f*(L/D)*v^2 = 300 000 - 0.5*998.7*0.0213*(5/0.015)*7.424^2 = 104 590 Pa = 104.6 kPa.