MHB Betting Strategy: Win Profits 90% of the Time

  • Thread starter Thread starter xNICK1
  • Start date Start date
  • Tags Tags
    Strategy
AI Thread Summary
The discussion revolves around creating a profitable betting strategy with a payout of 1:1, where a player wins 1 out of 4 rounds 90% of the time. The current strategy results in a negative profit after several games, prompting the original poster to seek advice on improving their betting method. Key points include the need to adjust betting amounts based on previous outcomes to achieve positive results. Participants challenge each other's understanding of the problem, indicating a lack of clarity on the optimal approach. The conversation highlights the complexities of betting strategies and the importance of adapting methods for better profitability.
xNICK1
Messages
14
Reaction score
0
Looking for help to try an make a profitable strategy off the example.
payout= 1:1
Using 4 rounds the strategy wins 1 of 4 rounds 90% of the time, the other 10% it loses all 4 rounds
Rules: if any round is won that game is over, else keep betting till all 4 rounds over
The question is how to I change the betting method to turn positive results
Key= g=game, r=round, b=betting amount, pl=current running Profit/lose
Ex1: 10 games of 4 rounds
g1: r1: b=1, lost, pl=-1 | r2: b=2, lost, pl=-3 | r3: b=4, won, pl=1
g2: r1: b=1, lost, pl=0 | r2: b=2, won, pl=2
g3: r1: b=1, lost, pl=1 | r2: b=2, lost, pl=-1 | r3: b=4, lost, pl=-5 | r4: b=8, won, pl=3
g4: r1: b=1, lost, pl=2 | r2: b=2, lost, pl=0 | r3: b=4, won, pl=4
g5: r1: b=1, won, pl=5
g6: r1: b=1, won, pl=6
g7: r1: b=1, won, pl=7
g8: r1: b=1, won, pl=8
g9: r1: b=1, won, pl=9
g10: r1: b=1, lost, pl=8 | r2: b=2, lost, pl=6 | r3: b=4, lost, pl=2 | r4: b=8, lost, pl=-6
Ex1: results to a -6 profit/lose after winning 9 trades in a row before losing 1
Is it possible?
 
Mathematics news on Phys.org
Challenge questions are posted as a test to other members where the OP knows the answer. It seems to me that you don't know it yet.

-Dan
 
Facts, want to give your 2 cents?
 
xNICK said:
Facts, want to give your 2 cents?
Are you saying you already know the answer? It doesn't look that way from the problem statement. If so, my apologies.

-Dan
 
No sir, I do not know the answer. Which is why I posted the question. I was unaware I needed to know the answer for this forum. My apologies.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top