- #1

- 97

- 0

## Homework Statement

If β=0 the neurone model is [itex]\dot{u}[/itex]= -u

[itex]\dot{v}[/itex]= v

^{2}+ v - u + [itex]\delta[/itex]

If [itex]\delta[/itex] = 1/4 it has critical point (0,-1/2)

Transform the system so that the critical point is at the origin so let [itex]\bar{v}[/itex] = v +1/2 and find the equations of motion for (u,[itex]\bar{v}[/itex])

## Homework Equations

## The Attempt at a Solution

Does this mean for a change of variables I let [itex]\bar{u}[/itex] =u and [itex]\bar{v}[/itex]= v + 1/2 subs in gives

[itex]\dot{u}[/itex] = [itex]\bar{u}[/itex]

[itex]\dot{v}[/itex] = [itex]\bar{v}[/itex]

^{2}+ [itex]\bar{u}[/itex]

Is that all I have to do?