Binding an integral Rudin 6.14

  • Thread starter Thread starter TaylorWatts
  • Start date Start date
  • Tags Tags
    Integral
TaylorWatts
Messages
15
Reaction score
0

Homework Statement



Let f(x) = integral [x to x+1] (sin(e^t)dt).

Show that (e^x) * |f(x)| < 2

and that (e^x) * f(x) = cos (e^x) - (e^-1)cos(e^(x+1)) + r(x) where:

|r(x)| < Ce^-x, C is a constant

Homework Equations



integration by parts

The Attempt at a Solution



Well, this integral obviously isn't an elementary function but I don't really care what it's equal to, just that the product of its absolute value and e^x is less than 2 for all x>0.

So I get:

(x+1)sin(e^(x+1)) - xsin(e^x) - integral [x to x+1] (t(e^t)cos(e^t)dt)

<= xsin(e^(x+1)) + sin(e^(x+1)) - xe^x + integral [x to x+1] ((te^t)dt) (since cos is between -1 and 1)

= xsin(e^(x+1)) + sin(e^(x+1)) - xe^x + te^t [evaluated at x to x+1] - integral [x+1 to x] e^t.

= xsin(e^(x+1)) + sin(e^(x+1)) - xe^x + (x+1)e^(x+1) - xe^x - e^(x+1) + e^x

Which doesn't really get me any kind of maximum value on the function if I take the derivative of that function times e^x.
 
Physics news on Phys.org
TaylorWatts said:
Let f(x) = integral [x to x+1] (sin(e^t)dt).

Show that (e^x) * |f(x)| < 2

But that's not true … e^1*|f(1)| > 7. :frown:

Do you mean (e^-x) * |f(x)| < 2?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top