Well it is only allowed to be in the interval -1<x<=1 ... picking a negative value in this range takes [2] to all negative terms ... and in fact choosing x=-1/2 makes the series converge to -ln(2) ... the opposite sign. But the idea here is not to start from the answer and work backward ... although that gives insight at times ... but to start with the original sum [1] and arrive at ln(2) ... plus the alternating series ln(1+x) *requires* x=1 if we're looking at ln(2). So I'm still confused. I realize that once I 'get' the answer, I'll be shaking my head.
Also my multiplication of the two series as shown might be in error as I'm multiplying by the harmonic series, a divergent series ... thus multiplying a divergent series by a convergent series ... which may be an invalid thing in some cases ... especially since the convergent series converges to 1.
I love Mary Boas's book as she makes you think very hard with her problem sets. I've already finished Chapter 3 on Linear Algebra which was truly excellent. In fact it was so good, I decided to also work on Chapters 1 and 2.
Thanks!