Boats in a triangle colliding after some time

AI Thread Summary
Three boats, B1, B2, and B3, are initially positioned at the vertices of an equilateral triangle and move towards each other with a constant speed v. The time it takes for the boats to collide is calculated to be t = 2a/(3v). The trajectory of one boat can be expressed mathematically as r(θ) = (a√3/3)e^(-√3θ). The discussion highlights the complexity of the changing angles as the boats approach each other, complicating the vector analysis of their paths. The problem emphasizes the symmetry and geometric relationships involved in their motion.
RubroCP
Messages
14
Reaction score
4
Misplaced Homework Thread moved to the schoolwork forums from a technical forum
Assume that three boats, ##B_1##, ##B_2## and ##B_3## travel on a lake with a constant magnitude velocity equal to ##v##. ##B_1## always travels towards ##B_2##, which in turn travels towards ##B_3## which ultimately travels towards ##B_1##. Initially, the boats are at points on the water surface that form an equilateral triangle with an edge ##a##, as shown in the following figure.

a) How long does it take for the boats to meet?

b) Calculate the expression of the trajectory described by one of the three boats.

GAB:
a)
##t=\frac{2a}{3v}##
b) ##r(\theta)=\frac{a\sqrt{3}}{3}e^{-\sqrt{3}\theta}##Hi guys, I would like some help in solving this problem. I first tried to describe the initial movement of each boat vectorly and tried to find the point where the boats collide. However, I've just noticed that the angle ##\theta## doesn't stay constant, so the velocity vector changes with each passing second. I've already solved a similar problem in Irodov, with turtles heading towards each other if I'm not mistaken, but the question didn't ask to describe the position as a function of time. I really appreciate it if you can help me with ideas.
 

Attachments

  • photo_2021-11-25_15-54-12.jpg
    photo_2021-11-25_15-54-12.jpg
    28.1 KB · Views: 136
Physics news on Phys.org
Here is a hint. After a small time ##\delta t##, then to first order in ##\delta t## each boat has moved ##v\delta t## along the edge of the triangle:

1637868064288.png


This results in a new equilateral triangle, of slightly shorter side length. What is the side length of this new triangle to first order in ##\delta t##? What is the change ##\delta l## in side length in time ##\delta t##? What is ##\delta l / \delta t##?

(You can imagine drawing a sequence of smaller and smaller such triangles until the boats collide. )
 
Much can be deduced as consequences of the symmetry of the problem.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...

Similar threads

Back
Top