Boundary Conditions for an infinite rectangular pipe

Click For Summary
SUMMARY

The discussion centers on the boundary conditions (B.C.) for solving the potential inside an infinite rectangular pipe using the 2-D Laplace equation. Participants clarify the axis assignments, identifying the horizontal axis as X, the vertical axis as Y, and the axis coming out of the page as Z. The voltage is set to V on the faces normal to the Y axis and 0 on those normal to the Z axis. The consensus is that the problem is independent of the Z axis due to the infinite length of the pipe.

PREREQUISITES
  • Understanding of 2-D Laplace equations
  • Familiarity with boundary conditions in electrostatics
  • Knowledge of coordinate systems in physics
  • Basic concepts of electric potential and voltage distribution
NEXT STEPS
  • Study the application of the 2-D Laplace equation in electrostatics
  • Research boundary condition techniques for solving potential problems
  • Explore coordinate transformations in physics
  • Examine examples of infinite geometries in electrostatics
USEFUL FOR

Students and professionals in physics and engineering, particularly those working with electrostatics and potential theory in infinite geometries.

guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
An infinite rectangular pipe with sides a, has two opposite sides at voltage V
(front and back) and at voltage V=0 (top and bottom).

Find the potential inside the pipe.
Relevant Equations
Fourier Sine Trick
Does setting up the problem symmetrically on this axis and the boundary conditions applied make sense? I don't believe I will have a problem solving for the potential inside, but i just want to make sure I have my B.C and axis correct before proceeding.

IMG_0381.jpg


EDIT:

Or should this be a 2-D lapace equation since the pipe is infinitely long, making this independent of the z axis?
 
Last edited:
Physics news on Phys.org
I'm a bit confused about how you are assigning the axes.
I'll call the left right axis X, the vertical axis Z and the lower left/ upper right axis in the picture Y. From that and the text description, I would say the pipe is infinite in the X axis and width a in the other two. The voltage is V on the faces normal to the Y axis and 0 on those normal to the Z axis.
 
haruspex said:
I'm a bit confused about how you are assigning the axes.
I'll call the left right axis X, the vertical axis Z and the lower left/ upper right axis in the picture Y. From that and the text description, I would say the pipe is infinite in the X axis and width a in the other two. The voltage is V on the faces normal to the Y axis and 0 on those normal to the Z axis.
Sorry I missed that. y is the vertical axis.z is the axis coming out of the page. X is horizontal.

But I think it should be independent of Z since it is infinitely long. It mirrors an example straight out my textbook.
 
quittingthecult said:
z is the axis coming out of the page.
quittingthecult said:
independent of Z since it is infinitely long.
Looking at the diagram, the infinitely long direction is horizontal.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
8
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K