Boundary Conditions for an infinite rectangular pipe

Click For Summary
The discussion centers on the appropriate boundary conditions and axis assignments for modeling an infinite rectangular pipe. Participants clarify their axis definitions, agreeing that the pipe is infinite along the X-axis, with the Y-axis representing width and Z-axis being vertical. There is consensus that the problem can be treated as a 2-D Laplace equation, as the infinite length along the Z-axis makes it independent of that dimension. The voltage conditions are specified, with V on the Y-axis faces and 0 on the Z-axis faces. Overall, the focus is on ensuring correct boundary conditions and axis orientation before proceeding with the solution.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
An infinite rectangular pipe with sides a, has two opposite sides at voltage V
(front and back) and at voltage V=0 (top and bottom).

Find the potential inside the pipe.
Relevant Equations
Fourier Sine Trick
Does setting up the problem symmetrically on this axis and the boundary conditions applied make sense? I don't believe I will have a problem solving for the potential inside, but i just want to make sure I have my B.C and axis correct before proceeding.

IMG_0381.jpg


EDIT:

Or should this be a 2-D lapace equation since the pipe is infinitely long, making this independent of the z axis?
 
Last edited:
Physics news on Phys.org
I'm a bit confused about how you are assigning the axes.
I'll call the left right axis X, the vertical axis Z and the lower left/ upper right axis in the picture Y. From that and the text description, I would say the pipe is infinite in the X axis and width a in the other two. The voltage is V on the faces normal to the Y axis and 0 on those normal to the Z axis.
 
haruspex said:
I'm a bit confused about how you are assigning the axes.
I'll call the left right axis X, the vertical axis Z and the lower left/ upper right axis in the picture Y. From that and the text description, I would say the pipe is infinite in the X axis and width a in the other two. The voltage is V on the faces normal to the Y axis and 0 on those normal to the Z axis.
Sorry I missed that. y is the vertical axis.z is the axis coming out of the page. X is horizontal.

But I think it should be independent of Z since it is infinitely long. It mirrors an example straight out my textbook.
 
quittingthecult said:
z is the axis coming out of the page.
quittingthecult said:
independent of Z since it is infinitely long.
Looking at the diagram, the infinitely long direction is horizontal.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K