PonyBarometer
- 3
- 0
Homework Statement
Given:lim_{n\rightarrow ∞} \int^{a^n}_{1} \frac{t^{1/n}}{(1+t)t} dt=\int^{∞}_{1} \frac{1}{(1+t)t} dt
a - Natural number.
I need to prove that I can bring limit under the integral sign.
Homework Equations
The Attempt at a Solution
I've got this so far:
| \int^{a^n}_{1} \frac{t^{1/n}}{(1+t)t} dt-\int^{∞}_{1} \frac{1}{(1+t)t} dt|\stackrel{?}{\rightarrow} 0 while n→∞
| \int^{a^n}_{1} \frac{t^{1/n}}{(1+t)t} dt-\int^{∞}_{1} \frac{1}{(1+t)t} dt|= [did everything I could and wound up with following]=|\int^{a^n}_{1} \frac{t^{1/n}-1}{(1+t)t} dt|
Now I need to either find a function g(t) so f(t)≤g(t) and \int^{a^n}_{1} g(t) dt →0. This is basically the place where I'm stuck and need your help.
p.s. I meant definite integral in the caption.
Last edited: