Calc-Based Stats, Prove a Conditional Distribution is Gamma Distributed

aleph_0
Messages
6
Reaction score
0

Homework Statement



An image of the assigned problem is here: http://imgur.com/aYkaM

Homework Equations



The formula for being exponential, gamma, and probably Bayes's Law. They'd take a while to type out, and presumably anyone who can help me with this already knows the formulas or will understand them by looking at my solution thus far.

The Attempt at a Solution



P(X_{1}=x_{1}, ..., X_{n}=x_{n}|W=w)P(W=w) \quad = \\\\ P(W=w|X_{1}=x_{1}, ..., X_{n}=x_{n})P(X_{1}=x_{1}, ..., X_{n}=x_{n}) \quad \Longrightarrow \\\\ P(W=w|X_{1}=x_{1}, ..., X_{n}=x_{n}) \quad = \quad \frac{P(X_{1}=x_{1}, ..., X_{n}=x_{n}|W=w)P(W=w)}{P(X_{1}=x_{1}, ..., X_{n}=x_{n})} \quad = \\\\ \frac{w^{n}e^{-w(x_{1}+...+x_{n})}\frac{\beta^{t}}{\Gamma (t)}w^{t-1}e^{-\beta w}}{P(X_{1}=x_{1}, ..., X_{n}=x_{n})} \quad = \quad \frac{\beta^{t}}{\Gamma (t) P(X_{1}=x_{1}, ..., X_{n}=x_{n})}{w^{t+n-1}e^{-w(\beta + \sum_{i=1}^{n}x_{i})}}

Now at this point I feel like I've gone most of the way, but the only thing is the "coefficient". For this to be a true gamma distribution with the said parameters, that front factor needs to be \frac{(\beta+\sum x_{i})^{t+n}}{\Gamma(t+n)} and I just can't see how to make that happen.
 
Physics news on Phys.org
aleph_0 said:

Homework Statement



An image of the assigned problem is here: http://imgur.com/aYkaM

Homework Equations



The formula for being exponential, gamma, and probably Bayes's Law. They'd take a while to type out, and presumably anyone who can help me with this already knows the formulas or will understand them by looking at my solution thus far.

The Attempt at a Solution



P(X_{1}=x_{1}, ..., X_{n}=x_{n}|W=w)P(W=w) \quad = \\\\ P(W=w|X_{1}=x_{1}, ..., X_{n}=x_{n})P(X_{1}=x_{1}, ..., X_{n}=x_{n}) \quad \Longrightarrow \\\\ P(W=w|X_{1}=x_{1}, ..., X_{n}=x_{n}) \quad = \quad \frac{P(X_{1}=x_{1}, ..., X_{n}=x_{n}|W=w)P(W=w)}{P(X_{1}=x_{1}, ..., X_{n}=x_{n})} \quad = \\\\ \frac{w^{n}e^{-w(x_{1}+...+x_{n})}\frac{\beta^{t}}{\Gamma (t)}w^{t-1}e^{-\beta w}}{P(X_{1}=x_{1}, ..., X_{n}=x_{n})} \quad = \quad \frac{\beta^{t}}{\Gamma (t) P(X_{1}=x_{1}, ..., X_{n}=x_{n})}{w^{t+n-1}e^{-w(\beta + \sum_{i=1}^{n}x_{i})}}

Now at this point I feel like I've gone most of the way, but the only thing is the "coefficient". For this to be a true gamma distribution with the said parameters, that front factor needs to be \frac{(\beta+\sum x_{i})^{t+n}}{\Gamma(t+n)} and I just can't see how to make that happen.

P(X_1=x_1,\ldots,X_n=x_n) = \int P(X_1=x_1,\ldots,X_n=x_n|w) f_W(w) \, dw. Just do the integral.

RGV
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top