Calc d<p>/dt: Calculate Derivative of Wave Function

  • Thread starter Thread starter Cogswell
  • Start date Start date
Cogswell
Messages
54
Reaction score
0

Homework Statement


Calculate ## \dfrac{d <p>}{dt} ##

Answer: ## \left< -\dfrac{\partial V}{\partial x} \right> ##

Homework Equations



Schrodinger equation: ## i \hbar \dfrac{\partial \Psi}{\partial t} = -\dfrac{\hbar ^2}{2m} \frac{\partial ^2 \Psi}{\partial x^2} + V \Psi ##

The Attempt at a Solution



Here's what I did:

## \displaystyle \dfrac{\partial}{\partial t} \int^{\infty}_{- \infty} \Psi ^* \left( \dfrac{\hbar}{i} \dfrac{\partial}{\partial x} \right) \Psi dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \dfrac{\partial}{\partial t} \Psi ^* \dfrac{\partial \Psi}{\partial x} dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \dfrac{\partial \Psi ^*}{\partial t} \dfrac{\partial \Psi}{\partial x} + \Psi^* \dfrac{\partial}{\partial t} \dfrac{\partial \Psi}{\partial x} \right] dx ## (Differentiation by Product rule)From the Schrodinger equation we get that: ## \dfrac{\partial \Psi}{\partial t} = \dfrac{i \hbar}{2m} \dfrac{\partial ^2 \Psi}{\partial x^2} - \dfrac{i}{\hbar} V \Psi ##

And it's conjugate: ## \dfrac{\partial \Psi ^*}{\partial t} = -\dfrac{i \hbar}{2m} \dfrac{\partial ^2 \Psi^*}{\partial x^2} + \dfrac{i}{\hbar} V \Psi^* ##

Putting those into my integral I get:

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \left( -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} + \dfrac{i}{\hbar} V \Psi^* \right) \dfrac{\partial \Psi}{\partial x} + \Psi^* \dfrac{\partial}{\partial x} \left( \dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi}{\partial x^2} - \dfrac{i}{\hbar} V \Psi \right) \right] dx ##

Expanding out everything:

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x} + \dfrac{i}{\hbar} V \Psi^* \dfrac{\partial \Psi}{\partial x} + \dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^* - \dfrac{i}{\hbar} \Psi^* \dfrac{\partial}{\partial x} (V \Psi) \right] dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x} + \dfrac{i}{\hbar} V \Psi^* \dfrac{\partial \Psi}{\partial x} + \dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^* - \dfrac{i}{\hbar} \dfrac{\partial V}{\partial x} \Psi \Psi * - \dfrac{i}{\hbar} \dfrac{\partial \Psi}{\partial x} V \Psi ^* \right] dx #### \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \underbrace{-\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x}}_1 + \underbrace{\dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^*}_2 - \underbrace{\dfrac{i}{\hbar} \dfrac{\partial V}{\partial x} \Psi \Psi *}_3 \right] dx ##

I'm stuck at this point. I'm presuming there's a way to cancel out each of the integrals? I know the last integral is the one I want but I do not know how to cancel out the first 2.
 
Physics news on Phys.org
I'd have kept the operator notation for longer, vis...

##
\renewcommand{H}{\hat{H}} \renewcommand{p}{\hat{p}}
\renewcommand{\expn}[1]{\left \langle #1 \right \rangle}
\renewcommand{dt}[1]{\frac{d #1}{dt}}
\renewcommand{dx}[1]{\frac{d #1}{dx}}
\renewcommand{intf}[1]{\int_{-\infty}^\infty #1 \; dx}
\renewcommand{ddx}[1]{ \frac{d^2 #1}{dx^2} }## Need to show:$$\text{(1)... }\dt{}\expn{\hat{p}} = \expn{-\dx{V}}$$ (i.e. Newton's second law...)
- expand: $$\begin{array}{rl}
i\hbar \dt{}\expn{\p} & = i\hbar \dt{} \intf {\Psi^\star p\Psi} \\
&= \intf { \left ( i\hbar \dt{} \Psi^\star \right ) \hat{p} \Psi + \Psi^\star \left ( i\hbar\dt{}(\hat{p}\Psi ) \right )} \; \text{ ...(2)}
\end{array}$$ - from the Schrodinger equation: $$\text{(3)... }i\hbar\dt{} \Psi = \H\Psi\\
\text{(4)... } \dt{}\expn{\p} = \frac{1}{i\hbar}\intf{ \H \Psi^\star \p\Psi + \Psi^\star \H\p\Psi} $$... hence, need to show that $$\text{(5)... } \H \Psi^\star \p\Psi + \Psi^\star \H\p\Psi = -i\hbar\Psi^\star \dx{V} \Psi$$ - which, I think, is pretty much where you are up to ;)
(caveat: do not rely on me to get the math right - check!)

- note that $$\text{(6)... }\p\H = - i\hbar \dx{} \left ( -\frac{\hbar^2}{2m}\ddx{}+V \right )$$ ... gives you third-order differentiation in x as well as the dV/dx you need.

So how do you change the order of the operations?
 
Last edited:
If you want to continue on from where you got to, use integration by parts to move ##\frac{\partial}{\partial x}## between ##\Psi## and ##\Psi^*##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top