Calculate Quantum Partition Function

QFT25
Messages
24
Reaction score
3

Homework Statement



Consider the case when the three Ising spins are replaced by quantum spins 1/2's with a Hamiltonian

H=-J(s1.s2+s2.s3+s3.s1) calcualte the quantum partition function

Homework Equations



Partition function is the sum of E^(-H*B) where B is 1/kt

The Attempt at a Solution



Because this is the discrete case I'm assuming the fact that this is a quantum partition function doesn't make much of a difference. there are eight possibility, two of them are (1/2,1/2,1/2),(1/2,1/2,-1/2) and when I sum them all up I get 2*E^(3*J*B/4)+6*E^(-J*B/4). Is my approach correct or am I missing something subtle because this is quantum partition function?
 
Physics news on Phys.org
Your approach and result look correct to me.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top