Calculating 238U/235U Ratio for Earth's Age

  • Thread starter Thread starter planesinspace
  • Start date Start date
  • Tags Tags
    Age Ratio
AI Thread Summary
To calculate the 238U/235U ratio for Earth's age, the current natural abundances of 238U and 235U are 99.274% and 0.72%, respectively. The half-lives of these isotopes are 4.468 billion years and 0.704 billion years. By determining the number of half-lives since Earth's formation, the past abundances can be calculated using the formula N(t) = N0 * e^(-lambda*t). The correct approach involves raising 2 to the power of the number of half-lives to find the multipliers for both isotopes, leading to a past ratio of approximately 199.54 for 238U and 60.46 for 235U. This calculation provides insight into the isotopic composition of uranium at the time of Earth's formation.
planesinspace
Messages
21
Reaction score
0

Homework Statement


The Age of the Earth is 4.5 × 109 y. Use the information given in the following table to
calculate the ratio of the number of 238U nuclei at the present time to the number of 235U nuclei
at the time of the formation of the Earth.

Isotope Half-life Current natural abundance(%)
238U 4.468 ×109 y 99.274
235U 7.04 ×108 y 0.72




Homework Equations


I used T1/2= ln(2)/lamda to work out lambda for both 235 and 238Uranium.

I converted time in years to seconds by no. of years * 3.156x10^7 ( I saw it done in my book don't really understand it but anyway :) )

I used N(t)=N0*e^-lambda*t to work out the number of radioactive nuclei at a given time.


The Attempt at a Solution



So basically just using those two equations I came to
238U N(t) and present to be = 0.498N0
and 235UN(t) at beginning, (hence t=0) to be N0,
so i said the ratio is 0.498... However upon doing this I realized I didnt take into account the last column of the table given in the quetsion, and seeing as the question says taking into account the following information, I figure I have gone about this the wrong way...
Any help much appreciated :)
 
Physics news on Phys.org
You have the current U-238/U-235 ratio of 99.274/0.72 . You can take this to represent a ratio of individual nuclei, rather than percentages. From the half-life information, you can figure out a multiplier for how many times more of each isotope there would have been 4.5 Gyr ago. If you multiply the numerator and denominator of your current ratio by the appropriate multipliers, you will have the ratio for that time in the past.
 
Ok well to work out the multipliers, I am not sure I have done it right, for 238U I divided 4.5e9 by 4.468e9 to see how many times it goes into it, then i multiplied that by two? because were going backwards from halfing them... and i did the same for 235U, is this the right method? I ended up with 238U past : 199.970009 and 235U past : 9.204.
 
You are correct in dividing 4.5·10^9 by 4.468·10^9 to find the number of U-238 half-lives, which is 1.0072. But you would then raise 2 to that power to get the number of times more U-238 that there was 4.5 Gyr ago. (The amount is halved with each passing half-life, so it would be doubled in going back into the past with each half-life.)

Similarly, you would find that there are 6.392 U-235 half-lives, so this is the power by which you would raise 2 to find the multiplier for the U-235 abundance for 4.5 Gyr in the past.

Your abundance ratio for 4.5 billion years ago will have a number close to 200 on top for U-238, but the denominator for U-235 will be substantially larger than 9...
 
So I ened up with 199.54/60.46 for the ratio of them in the past.
So do I just put the number of u238 present (99.274) over 60.46?
It seems a pretty pointless calculation..
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top