Calculating Adiabatic Cooling at 1000 Meters Using Atmospheric Law

  • Thread starter Thread starter EzequielSeattle
  • Start date Start date
  • Tags Tags
    Adiabatic Cooling
AI Thread Summary
A pocket of air rising 1000 meters cools due to adiabatic processes, with the pressure at that altitude calculated to be 90202 Pa or approximately 0.89 atm. The user initially assumed a volume of 1 m³ and used γ=(5/7), leading to incorrect results indicating heating instead of cooling. Upon clarification, it was confirmed that γ should be the ratio of Cp/Cv, which is 7/5 for diatomic gases. Correcting this value resolved the issue, allowing for accurate calculations of cooling. Understanding the correct value of γ is crucial for applying adiabatic equations effectively.
EzequielSeattle
Messages
25
Reaction score
0

Homework Statement


A pocket of air rises 1000 meters. Estimate how much it cools. Use the atmospheric law to determine pressure at 1000 meters.

Homework Equations


P = P0 * e-Mgz/RT
PVγ = constant
TVγ-1 = constant

The Attempt at a Solution


Using the atmospheric law, I found the pressure at 1000 meters to be 90202 Pa, or about 0.89 atm. I'm not sure how to use the adiabatic equations. I just assumed V1 was 1 m3, and also assumed that γ=(5/7), as the atmosphere is mainly diatomic. Plugging these in, I got that the gas expands to about 1.09 m3, but when I tried to plug that into my last equation, I got that the gas actually HEATS up, which I know is wrong. What did I do wrong? Please help!
 
Physics news on Phys.org
EzequielSeattle said:

Homework Statement


A pocket of air rises 1000 meters. Estimate how much it cools. Use the atmospheric law to determine pressure at 1000 meters.

Homework Equations


P = P0 * e-Mgz/RT
PVγ = constant
TVγ-1 = constant

The Attempt at a Solution


Using the atmospheric law, I found the pressure at 1000 meters to be 90202 Pa, or about 0.89 atm. I'm not sure how to use the adiabatic equations. I just assumed V1 was 1 m3, and also assumed that γ=(5/7), as the atmosphere is mainly diatomic. Plugging these in, I got that the gas expands to about 1.09 m3, but when I tried to plug that into my last equation, I got that the gas actually HEATS up, which I know is wrong. What did I do wrong? Please help!

What is gamma? it should be the ratio of Cp/Cv, correct? Which is larger, Cp or Cv ? Should gamma be greater or less than one?
 
Thank you! I was accidentally using γ=5/7 instead of 7/5. It works now.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top