Calculating Area Inside Polar Curve: (-y/2)dx + (x/2)dy

  • Thread starter Thread starter Tonyt88
  • Start date Start date
  • Tags Tags
    Area Curve Polar
Tonyt88
Messages
62
Reaction score
0

Homework Statement



Using the integral of (-y/2)dx + (x/2)dy
Calculate the area inside the limacon with polar equation:

r = 5 - 3sin(theta)


Homework Equations





The Attempt at a Solution



No idea where to begin.
 
Physics news on Phys.org
notice that the divergence of the vector field that you are integrating over is 1. So, if you integrate 1 over the region of the limaçon, what can that integral be transformed into?
 
I think I've got it:

x = r cos(theta)
y = r sin(theta)

Solve for dx/d(theta) and dy(theta)

Integrate from 0 to 2(pi) and that should go well? :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top