Calculating Center of Mass: Pendant Sector with Holes

AI Thread Summary
The discussion focuses on calculating the center of mass for a pendant shaped like a circular sector with three small holes. The pendant has a radius of 4 cm and an angle of 0.4 radians, with holes positioned along the axis of symmetry. Initial calculations suggested a center of mass distance of 2.66 cm from point A, but the correct answer is 2.47 cm. The discrepancy arose from an error in including the center of mass of the sector itself. The diagram provided was unclear, leading to confusion in the calculations.
phospho
Messages
250
Reaction score
0
The diagram shows a pendant in the shape of a sector of a circle with center A. The radius is 4 cm and the angle at A is 0.4 radians. Three small holes of radius 0.1 cm, 0.2cm and 0.3 cm are cut away. The diameters of the holes lie along the axis of symmetry and their centers are 1, 2 and 3 cm respectively from A. The pendant can be modeled as a uniform lamina. Find the distance of the center of mass of the pendant from A. Moments about A (y = 0 due to symmetry)

x = \frac{(0.5\times4^2\times0.4)\times(\frac{2\times4\times(sin(0.2))}{0.6}) - (0.1^2\pi\times(1)) - (0.2^2\pi\times(2))-(0.3^2\pi\times(3))}{(0.5\times4^2\times0.4) - (0.1^2\pi) - (0.2^2\pi) - (0.3^2\pi)} <br /> =&gt; x = 2.66...<br />
However the answer is 2.47 :s
 
Last edited:
Physics news on Phys.org
diagram?
 
Where's the center of mass of the sector itself?
 
Anva0.png
The diagram was rather rubbish so I didn't include it (it's pretty much exactly like this, just the circles centers are in the line of symmetry).

I've edited my original post to include the center of mass of the sector - I just copied it wrong.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top