Calculating % Contribution of nth Wavefunction in Potential Well

Caldo120
Messages
3
Reaction score
0

Homework Statement



What fraction (as a percentage) does the n=(2x2-1)th infinite potential well wavefunction contribute to the 'classical' initial wavefunction psi(x,t=0)=1/sqrt(L) ? (Why are the even n excluded?)

Homework Equations



psi(x,t=0) = 1 / sqrt(L)

The Attempt at a Solution



generally pretty dumbfounded with this, our lecturer hasn't went through a worked example and i can't find any related equations in my notes. Any help on the question would be greatly appreciated. I intend to ask my lecturer about it as well and the lack of related material. I think it may have something to do with Fourier series?

Thanks,

Calum
 
Physics news on Phys.org


use the coefficient equation if you know what that is. And what energy level is that exactly
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top