Calculating Darboux Integrals for a Piecewise Function on the Interval [0,b]

  • Thread starter Thread starter gutnedawg
  • Start date Start date
  • Tags Tags
    Integral
gutnedawg
Messages
34
Reaction score
0

Homework Statement


Let f(x) = x for rational x anf f(x) = 0 for irrational x. Calculate the upper and lower Darboux integrals for f on the interval [0,b]. Is f integrable on [0,b]


Homework Equations





The Attempt at a Solution



I'm thinking that f is no integrable but I'm just sketchy with Darboux integrals and need some pointing in the correct direction/explanation
 
Physics news on Phys.org
To compute the lower and upper Darboux sums for f corresponding to any partition of [0, b], you will need to know lower and upper estimates for f on subintervals of [0, b]. Therefore, let [l, r] be any subinterval of [0, b]. What is the lower estimate \inf \{ f(x) \mid x \in [l, r] \}? What is the upper estimate \sup \{ f(x) \mid x \in [l, r] \}?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top