Calculating Electric Field from a Dipole: Is This Equation Accurate?

AI Thread Summary
The discussion focuses on the accuracy of the equation used to calculate the electric field at point P from a dipole. It clarifies that the electric field, represented as a vector, requires careful consideration of vector addition from both positive and negative charges. The initial misunderstanding about the components of the electric field is corrected, emphasizing that the x-components cancel while the y-components do not. The final equation derived is E = 2kQx/r^3, indicating the correct approach to calculating the electric field. The conversation highlights the importance of systematic problem-solving and accurate variable naming in physics calculations.
novelriver
Messages
7
Reaction score
0
Is this the correct equation to find the electric field at point p from a dipole?
upload_2016-9-9_3-33-52.png

upload_2016-9-9_3-34-2.png
 

Attachments

  • upload_2016-9-9_3-28-10.png
    upload_2016-9-9_3-28-10.png
    7.8 KB · Views: 589
  • upload_2016-9-9_3-30-33.png
    upload_2016-9-9_3-30-33.png
    1,014 bytes · Views: 2,477
Physics news on Phys.org
Hello Novel, :welcome:

You don't want to delete the template; it's very useful for you as well as for us. See the guidelines.

Answer to your question: No. ##\ \vec E\ ## is a vector. What does your E describe, you think ?
 
BvU said:
Hello Novel, :welcome:

You don't want to delete the template; it's very useful for you as well as for us. See the guidelines.

Answer to your question: No. ##\ \vec E\ ## is a vector. What does your E describe, you think ?

Thanks for your reply. I'll make sure to not delete the template next time. I think my E describes the magnitude of the electric field. After calculating the magnitude, I can decide if it's positive or negative. So in this case, E is negative, because E is going down, away from positive and toward negative. Is this right?
 
I'll give you some leeway because you are new here (let's hope I don't get chastized for that).
Also because I think you have a fair idea what you are doing, but you stumble because you are going too fast.

Again, ##\vec E## is a vector. I've drawn the two contributions from the +Q and the -Q in the figure.
There are no other contributions, so the field at P is the sum of these two. The vector sum, that is. Your job to do this vector addition. Andf yes, x/r appears in there (not x/R but x/r; I don't see or know of R in your post. Work accurately :smile:). And yes, it's downwards. Easy exercise, but a good vehicle to learn to work systematically.
upload_2016-9-9_12-12-42.png
 
BvU said:
I'll give you some leeway because you are new here (let's hope I don't get chastized for that).
Also because I think you have a fair idea what you are doing, but you stumble because you are going too fast.

Again, ##\vec E## is a vector. I've drawn the two contributions from the +Q and the -Q in the figure.
There are no other contributions, so the field at P is the sum of these two. The vector sum, that is. Your job to do this vector addition. Andf yes, x/r appears in there (not x/R but x/r; I don't see or know of R in your post. Work accurately :smile:). And yes, it's downwards. Easy exercise, but a good vehicle to learn to work systematically.View attachment 105666

I think I understand.

E = kQ/r2 * cos(theta) because the y-components cancel out and we just want to get the x-component. I'll call the horizontal distance d (in a real problem it would be given or I could find it with trig), so cos(theta) = d/r. Therefore E = kQ/r2 * d/r = kQd/r3.
 
novelriver said:
I think I understand.

E = kQ/r2 * cos(theta) because the y-components cancel out and we just want to get the x-component. I'll call the horizontal distance d (in a real problem it would be given or I could find it with trig), so cos(theta) = d/r. Therefore E = kQ/r2 * d/r = kQd/r3.

I just realized my mistake. It's the x-components that cancel, not the y. So E = kQ/r2 * sin(theta) = kQ/r2 * x/r = kQx/r3 and then multiply by 2 because there are two charges acting on P in the same direction. So E = 2kQx/r3.
 
Looks good to me. x and y are a bit confusing here because of the x's in the figure.
 
BvU said:
Looks good to me. x and y are a bit confusing here because of the x's in the figure.

Right, I realized that I should have chose a different variable name than x. Thank you for your help! I appreciate it!
 
Back
Top