Calculating Electric Field from Electron Drift and Diffusion in Si Sample"

  • Thread starter Thread starter orangeincup
  • Start date Start date
  • Tags Tags
    Drift Electron
AI Thread Summary
The discussion focuses on calculating the electric field in a silicon sample based on electron drift and diffusion. The electron concentration is given as a function of position, and the total electron current density is stated to be independent of position. Participants are seeking an expression for the electric field related to the electron current density and evaluating it at specific current densities. The conversation highlights the need to derive the current density using known values and equations related to electron mobility and concentration. The problem is ultimately resolved with the necessary calculations for the electric field.
orangeincup
Messages
121
Reaction score
0

Homework Statement


A sample of Si, in which 0<=x<=(25*10^-4), electron concentration is n(x)=5*10^16 cm^-3) * exp(-x^3/2*10^-8), temperature is 300k and electron mobility is 1300 cm^2/V*s. The electron current through the Si has both drift and diffusion components and total electron current density through the sample is independent of x.

Find an expression for the electric field as a function of electron current density.
Evaluate the electric field at 10*10^-4 if the electron current density is 15 A/cm^2.
Evaluate the electric field at 10*10^-4 if the electron current density is 0 A/cm^2.

Homework Equations


Jn=e*n(x)*un*Ex+e*Dn*du/dx
Jn=pvd
Jn=(ep)vdp

The Attempt at a Solution


For the first part, I think I know how to solve if I can calculate Jn, since I have all the other values except Jn and Ex(which I need to solve for). Is there an equation which let's me solve for Jn with the values I have? Is there a constant I'm missing?
 
Yeah I solved it, thanks
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top