Calculating Energy, Angular Momentum & Period for Binary Stars in ZMF

  • Thread starter Thread starter bon
  • Start date Start date
  • Tags Tags
    Orbits
bon
Messages
547
Reaction score
0

Homework Statement



Two individual stars in a binary system (m1=mo, m2=2mo) are in circular orbit about their common centre of mass and are separated by a distance ro. At some stage, the more massive star explodes - resulting in the two stars having equal mass after the explosion

(a)Calculate the total energy, angular momentum and period of the binary star as viewed in the ZMF before the collision.

Homework Equations





The Attempt at a Solution



Not sure how to do this...For energy, do I find the energy of each inidividually and add? How about for angular momentum? Surely that is just zero in total because the two are equal and opposite?
thanks
 
Physics news on Phys.org
What is the ZMF?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top