Calculating Energy Released Per Proton & Mass Converted to Energy/sec

  • Thread starter Thread starter Qyzren
  • Start date Start date
  • Tags Tags
    Astro Process
Qyzren
Messages
41
Reaction score
0
H1 means hydrogen with mass 1, H2 means hydrogen with mass 2 (has a neutron), etc


1) H1 + H1 -> H2 + positron + neutrino + 1.18 Mev (+0.26MeV)
2) H1 + H2 -> He3 + photon + 5.49MeV
3) He3 + He3 -> He4 + 2*H1 + 12.86 MeV

(The neutrino produced in 1 for all practical purposes do not interact with matter, so their energy can be ignored (neutrino energy 0.26MeV)

Using the above 3 equations, calculate the energy released per proton. Note that the equations must be properly combined in order to find the overall reaction! Given the sun's luminosity calculate the amount of hydrogen converted to helium every second. How much mass per second is converted directly to energy?


Homework Equations


sun's luminosity: 3.826*10^26 W

answers: 6.55 MeV, 6.2*10^11 kg, 4.3x10^9 kg.

The Attempt at a Solution



I have shown each proton has released 6.55 MeV. but how do i calculate the amount of hydrogen converted to helium every second?
 
Last edited:
Physics news on Phys.org
(I removed part of my reply, since I missed at first where you said you'd gotten the 6.55 MeV per proton.)

Having gotten that answer, you have the energy release (in MeV) from one pp-reaction. Given what the luminosity (power output) of the Sun is, how many of these reactions would be needed per second? How many protons cease to exist as individuals and become groups of four in nuclei every second? How much mass is that?

Last question -- Since you have the Sun's luminosity, what mass is that energy equivalent to (that will take you from, say, Joules per second to kg/sec)? What famous equation might you use?
 
Last edited:
part c I've got, directly using E = mc² gives 4.3*10^9 kg

but i still have trouble with part b :(

Luminosity of sun is 3.826*10^26 W which is 3.826*10^26 J/s
6.55 MeV = 1.049 * 10^-12 protons/J .
 
Last edited:
Qyzren said:
i still have trouble with part b :(

Luminosity of sun is 3.826*10^26 W which is 3.826*10^26 J/s
6.55 MeV = 1.049 * 10^-12 J/proton .
so if you divide it you can get 3.64*10^38 J/proton...
Watch your units: that division gives you 3.64·10^38 protons/sec. What mass does that many protons have?

just using E = mc2 to convert J to kg won't get me the answer of 6.2*10^11 kg :(

That equation is for finding the mass-equivalent of the 3.826·10^26 J/sec, which is the answer for the third question.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top