Calculating Free Fall Motion: A Practice Problem with Step-by-Step Solution

AI Thread Summary
The discussion focuses on calculating the time a ball is in free fall and its initial horizontal velocity after being shot off a 35 m cliff. The initial calculations suggest the ball is in the air for approximately 2.02 seconds, leading to an initial velocity of 19.802 m/s. However, there is confusion regarding the use of equations, as the horizontal distance may not directly influence the time of fall. Participants clarify that the vertical motion is independent of horizontal motion, emphasizing the need to focus on vertical displacement to determine time. The conversation highlights the importance of correctly applying physics principles to solve projectile motion problems.
tmc123
Messages
3
Reaction score
0

Homework Statement



The original question is:
A ball is shot horizontally off the edge of a cliff 35 m high. The ball lands 20 m from the base of the cliff.
a. How long was the ball in the air?
b. What was the initial velocity of the ball?

Homework Equations



I believe these would be helpful.
x - Δx = vt - (1/2)at^2
x - Δx = Vot + (1/2)at^2

The Attempt at a Solution



To find time, I have this:
20 = 0t - (1/2)(-9.8)t^2
20 = 4.9t^2
t = 2.02 sec

which I then plugged into the second equation to find Vo

20 = Vo (2.02) + (1/2)(-9.8)(2.02)^2
20 = 2.02 Vo - 20
40 = 2.02 Vo
Vo = 19.802 m/s

This unfortunately appears to be in error, but I am unsure where I went astray. I think it's something about the incorrect equations being used, or my not fully understanding the problem.
 
Physics news on Phys.org
The ball is being shot horizontally with certain velocity, not given.
The ball is "dropped" vertically from rest and traveled distance given.
You can find time traveled by the ball to the base.
 
Hi - just a quick question to clarify. When you say I can find the time by the ball to the base, are you saying that the x is irrelevant (so I should try setting my equation equal to 0 instead of 20?).
 
x is the product of time and velocity. No forces acting horizontally, so acceleration is irrelevant.
y is given with initial velocity and acceleration(since there is force acting on it, gravity). From this you can find the time.
 
Alright. I'll give that a try. Thank you.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top