I Calculating Hamiltonian matrix elements in a chaotic system

Pyrus96
Messages
3
Reaction score
0
The system in which I tried to calculate the Hamiltonian matrix was a particle in a stadium (Billiard stadium). And I used the principle where we take a rectangle around the stadium in which the parts outside the stadium have a very high potential V0.
We know the wave function of a rectangular potential well and through this I found the following formula for the Hamiltonian matrix elements:
$$H_{nm} = [(\frac{m_{1}}{a_{1}})^{2} +(\frac{m_{2}}{a_{2}})^{2}]\delta_{nm} + V_{0}v_{nm}$$
where vnm is given by:
$$v_{nm} = \int_{\Gamma^{'}}\phi_{n}\phi_{m}$$
where ##\Gamma^{'}## denotes the area in the rectangle which isn't part of the stadium. And the wave functions are given by:
$$\phi_{m_{1},m_{2}}(x_{1},x_{2}) = \int sin(\frac{\pi m_{1}x_{1}}{a_{1}})sin(\frac{\pi m_{2}x_{2}}{a_{2}})$$
but here's my problem, the system we work in is two dimensional and thus we get energy levels corresponding to the doublets: ##n = (n_{1},n_{2})## and ##m = (m_{1},m_{2})##. How am I supposed to interpret the matrix with this because I can't imagine a matrix from that can correspond to ##H_{(2,1)x(1,1)}##

Please note that I didn't bother to write several constants in front of the formula of the hamiltonian and the wave function because they don't matter to the answer.
 
Physics news on Phys.org
It is difficult to say, what is your final objective with those matrix elements but they will be just a version of your first formula
$$
H_{\mu, \nu} = \epsilon_{\mu} \delta_{\mu, \nu} + V_0 v_{\mu, \nu},
$$
where ##\mu## and ##\nu## are some parametrizations of states in an rectangular box, ##\epsilon_\mu## are respective energies and so on. For instance, ##|\mu \rangle = |m_1, m_2 \rangle ## and
$$
\langle \mu | H | \nu \rangle =: H_{\mu, \nu} = H_{m_1, m_2; n_1, n_2} : = \langle m_1, m_2 | H | n_1, n_2 \rangle =
\int dx_1 \ dx_2 \ \phi_{m_1, m_2}^*(x_1, x_2) \widehat{H} \phi_{n_1, n_2}(x_1, x_2).
$$
You deal with such "direct product" matrices in a way very similar to usual matrices. For example,
$$
\langle \mu | \widehat{A} \widehat{B} | \nu \rangle = \sum_\lambda A_{\mu, \lambda} B_{\lambda, \nu} =
\sum_{l_1, l_2} \langle \mu | \widehat{A} | l_1, l_2 \rangle \langle l_1, l_2 | \widehat{B} | \nu \rangle
$$
and so on.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top