Calculating Integral: \int\frac{x^3dx}{\sqrt{2-x}} Solution and Alternatives

  • Thread starter Thread starter azatkgz
  • Start date Start date
  • Tags Tags
    Integral
azatkgz
Messages
182
Reaction score
0

Homework Statement



\int\frac{x^3dx}{\sqrt{2-x}}




The Attempt at a Solution


I solved it in this way
for v=2-x
\int-\frac{(2-v)^3dv}{\sqrt{v}}=-\int\frac{(8-12v+6v^2+v^3)dv}{\sqrt{v}}<br /> =-\int\frac{8dv}{\sqrt{v}}+\int 12\sqrt{v}dv-\int 6v\sqrt{v}dv-\int v^2\sqrt{v}dv
is it true?
Is there any other methods?
 
Last edited:
Physics news on Phys.org
That's one way of doing it. If you substitute v2 for 2-x, you will have a radical-free expression to integrate.
 
Ok,very nice.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top