Calculating Integral of \int \frac{dx}{x(x^4+1)} using Substitution

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Integral
nameVoid
Messages
238
Reaction score
0
<br /> \int \frac{dx}{x(x^4+1)}<br />
<br /> u=x^2<br />
<br /> \sqrt{u}=x<br />
<br /> dx=\frac{1}{2\sqrt{u}}<br />
<br /> \frac{1}{2}\int \frac{du}{u^2+1}<br />
<br /> \frac{1}{2}arctanx^2+C<br />
 
Physics news on Phys.org
nameVoid said:
<br /> \int \frac{dx}{x(x^4+1)}<br />
<br /> u=x^2<br />
<br /> \sqrt{u}=x<br />
<br /> dx=\frac{1}{2\sqrt{u}}<br />
<br /> \frac{1}{2}\int \frac{du}{u^2+1}<br />
The integral above isn't right. You forgot to replace the x factor in the denominator.
nameVoid said:
<br /> \frac{1}{2}arctanx^2+C<br />
 
<br /> \frac{1}{2} \int \frac{du}{u(u^2+1)}=\int \frac{A}{u}+\frac{Bu+C}{u^2+1}du<br />
<br /> A=\frac{1}{2}=-B<br />
<br /> ln|x|-\frac{1}{4}ln(x^4+1)+C<br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top