Calculating Integral of x^2-2x e^-x dx

  • Thread starter Thread starter mattibo
  • Start date Start date
  • Tags Tags
    Dx Integral
mattibo
Messages
7
Reaction score
1
integral (x^2 - 2x) e^-x dx

Im just wondering if there's a fast way to calculate this integral or is the only way to do it by parts twice. The prof didnt show any work in the solution and went right to the solution. Am I missing something obvious?
 
Last edited:
Physics news on Phys.org
what is E?
 
sutupidmath said:
what is E?

eulers number (e)
 
I think your plan of using integration by parts is the way to go.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top