Calculating Integral: Solving \int_{0.5}^{\infty }e^{-jwt}dt

  • Thread starter Thread starter khdani
  • Start date Start date
  • Tags Tags
    Integral
khdani
Messages
53
Reaction score
0
hello,
how do i calculate this integral:
<br /> I = \int_{0.5}^{\infty }e^{-jwt}dt<br />

i though it should be
<br /> I=0 - \frac{e^{-jw/2}}{-jw} = \frac{e^{-jw/2}}{jw}<br />

but it seems that the first part isn't zero...why ?
 
Physics news on Phys.org
<br /> \begin{align*}<br /> I &amp;= \int_{0.5}^\infty e^{-jwt} \,dt \\<br /> &amp;= \lim_{a\to\infty} \int_{0.5}^a e^{-jwt} \,dt \\<br /> &amp;= \lim_{a\to\infty} \frac{e^{-jwt}}{-jw} \,\bigg|_{0.5}^a \\<br /> &amp;= \lim_{a\to\infty} \frac{e^{-jwa}}{-jw} - \frac{e^{-jw/2}}{-jw} \\<br /> &amp;= \left( \lim_{a\to\infty} \frac{e^{-jwa}}{-jw} \right) + \frac{e^{-jw/2}}{jw}<br /> \end{align*}<br />

You handle improper integrals by using limits, but the reason why you don't have zero is because the limit on the left doesn't converge for a general w. The complex function e-jwa is a periodic function.
 
e^{-i\omega t}= cos(\omega t)- i sin(\omega t) for real t. That does NOT go to 0 as t goes to infinity.
 
i see.
how do i calculate the final result?
 
khdani said:
i see.
how do i calculate the final result?

I think you can use : \lim_{x \to + \infty} \frac{\cos(x)}{x}= \lim_{x \to + \infty} \frac{\sin(x)}{x}=0
 
Hermit said:
I think you can use : \lim_{x \to + \infty} \frac{\cos(x)}{x}= \lim_{x \to + \infty} \frac{\sin(x)}{x}=0

I don't think that helps in this case, since his limit is with respect to a, and there is no a in the denominator of the limited term
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top