ColdFusion85
- 141
- 0
Homework Statement
We are to use the convolution theorem to compute the inverse Laplace transform of the function
L=\frac{1}{s^2 + 16}e^{-2s}
Homework Equations
Using a table, I find that L^{-1}[\frac{1}{s^2 + 16}] = \frac{1}{4}sin(4t)
and
L^{-1}[e^{-2s}] = \delta(t-2)
The Attempt at a Solution
Using the convolution theorem, L^{-1}[\frac{1}{s^2 + 16}e^{-2s}] = \int_{0}^{t} \frac{1}{4}sin(4\tau)\delta(\tau-2)d\tau
My question is, how do I evaluate that integral? I know that when you have the delta function, e.g. \delta(t-2) times a function f(x), and the limits are negative infinity to infinity, it is just f(2). But what if the limits are 0 to t?