Calculating Kinetic & Potential Energy of Rama's Impact

AI Thread Summary
To calculate the energy of Rama before it impacts Earth, both kinetic energy (KE) and potential energy (PE) must be considered. The relevant equations include KE = 1/2 mv^2 and the gravitational potential energy equation. As Rama descends, its potential energy decreases while its kinetic energy increases, maintaining a constant total energy. To find the final kinetic energy upon impact, one must account for the change in potential energy during the descent. The final equation can be expressed as Efinal = Ekinetic + change in Epotential, ensuring the correct signs for energy changes are applied.
Mecia22
Messages
9
Reaction score
0

Homework Statement


-- This is out of Rendezvous With Rama by Arthur C. Clarke
You know it is 907184 kg and is going 50,000 m/s
So how much energy does it have right before it hits the earth?

Homework Equations



Do I use Fg= Gm1m2/r^2 ?
Ek=1/2mv^2?
I have ΔE=1/2mv^2 written down as an equation to use as well.

The Attempt at a Solution


I think I'm supposed to calculate the potential energy at 2 different spots and find the ΔE, but I'm not sure.

E=Gm1m2/r+1/2mv^2 would that work?
 
Last edited:
Physics news on Phys.org


At any particular point it has both KE and PE. As it descends, PE decreases and KE increases by the same amount. At the point you describe the KE is given by Ek=1/2mv^2, but to know what the energy will be when it strikes Earth you also need to know how much PE it will lose in the remaining descent. So you need the altitude at the point where the speed is known.
 


haruspex said:
At any particular point it has both KE and PE. As it descends, PE decreases and KE increases by the same amount. At the point you describe the KE is given by Ek=1/2mv^2, but to know what the energy will be when it strikes Earth you also need to know how much PE it will lose in the remaining descent. So you need the altitude at the point where the speed is known.


Okay, so then the equation would be E=EK+EP?
 


Depends what you mean by EP there. Write the equation in terms of four entities: Eki = KE at known initial point, Epi = PE at known initial point, Ekf = KE on collision, Epf = PE on collision.
 


Yikes... you're confusing me.
I guess what I'm asking is what steps would I do to get to my final equation?Would it be Efinal=Ekinetic+change of Epotential ?
 
Last edited:


Mecia22 said:
Yikes... you're confusing me.
I guess what I'm asking is what steps would I do to get to my final equation?


Would it be Efinal=Ekinetic+change of Epotential ?

Yes, provided (i) Efinal means the KE on impact, and (ii) you get the sign right on the change in potential.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top