Calculating Light Beam Speed with Inverse Trig Functions

imull
Messages
40
Reaction score
0

Homework Statement


A patrol car is 50 ft from a long warehouse. The revolving light on top of the car turns at a rate of 30 rotations per minute. How fast is the beam of light moving along the warehouse wall when the beam makes a 45° angle with the line perpendicular from the light to the wall?

Homework Equations


The Attempt at a Solution


First I started out by setting θ as a function of x : tanθ=(x/50)→θ=arctan(x/50). So when θ=45°, x=50ft. dθ/dt is 30(2∏)=60∏. So taking the derivative: dθ/dt=[(50)/(502+x2)]dx/dt. After substituting values, 60∏=(0.01)dx/dt→dx/dt=6000∏ ft/min. Is this right?
 
Physics news on Phys.org
imull said:

Homework Statement


A patrol car is 50 ft from a long warehouse. The revolving light on top of the car turns at a rate of 30 rotations per minute. How fast is the beam of light moving along the warehouse wall when the beam makes a 45° angle with the line perpendicular from the light to the wall?

Homework Equations


The Attempt at a Solution


First I started out by setting θ as a function of x : tanθ=(x/50)→θ=arctan(x/50). So when θ=45°, x=50ft. dθ/dt is 30(2∏)=60∏. So taking the derivative: dθ/dt=[(50)/(502+x2)]dx/dt. After substituting values, 60∏=(0.01)dx/dt→dx/dt=6000∏ ft/min. Is this right?

Yes, it is right. But you didn't really need to go through the arctan stuff. Just differentiate both sides of 50tanθ=x.
 
Last edited:
Okay, thank you. The reason that I did the arctan stuff was because we're doing arctan derivatives, so I figured my teacher would want me to do it that way.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top